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Summary. An evaluation of the coulomb integral for a cuboid with uniform 
density is presented in analytic form, leading to the development of non-overlap- 
ping cube basis functions. The coulomb energy of the hydrogen molecule is 
determined with these functions fitted to the molecular orbital, and this result is 
compared with the ab initio coulomb energy. 
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1 Introduction 

It may be argued that the introduction of newer basis sets for atomic and molecular 
systems have generally resulted from a simplification of the form of hydrogenic 
wavefunctions. Slater's function dispensed with the radial nodes of the hydrogenic 
functions. Subsequently, the use gaussian functions, introduced by Boys [1], 
further simplified the evaluation of the one- and two-electron integrals, despite 
the need for a larger number of Gaussians to describe adequately the Slater or 
hydrogenic functions. In addition, the use of gaussian functions has facilitated the 
development of analytic derivative methods. 

Hall described the use of a discontinuous function [2], representing the radial 
part of the hydrogen atom solution as a single step function; by variationally 
optimising the radius at which the step occurred he managed to obtain approxi- 
mately 60% of the energy of the hydrogen atom. This paper examines the suitabil- 
ity of a particular class of discontinuous functions as a basis set for use in quantum 
mechanical calculations of molecular systems. These functions have the form 

~o=f(x ,y ,z ) .ASA=l  inrangexmin<x<x . . . .  Ymin<Y<Ymax,Zmi,<Z<Zmax, 
0 otherwise, 

(1) 

and, while the dimensions (or sides) of the cuboid may differ, we choose to develop 
functions with identical dimensions (on account of the form of the multipole 
expansion of a uniformly dense cube) and so we call them cube functions. In this 
paper, we consider only the case where f(x, y, z) is a non-zero constant. 
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Fig. 1. Fragmentation of the middle square into four 
subsquares - the same fragmentation scheme may be 
extended to three dimensions 

Space may be filled with these cubes such that they may share faces but do not 
overlap with one another; this cellular net can comprise a numerical basis set where 
functions over the whole space can be described within this basis as a linear 
combination of the cube functions. As the cube sizes are reduced the basis set 
approaches completeness. This reduction in the size of the cubes may be achieved 
by fragmenting a particular cube into 8 component cubes; a 2-dimensional example 
is shown in Fig. 1. There h a s  recently been a tendency to move away from 
continuous basis sets towards methods involving quadrature [3-6] and compari- 
sons may be made with finite element approaches to SCF calculations [7]. 

In the next section some useful properties of these cube functions are discussed 
and in the subsequent sections the one- and two-electron integrals are evaluated. 
Finally, results are presented for the hydrogen molecule which compare the 
coulomb energy calculated analytically with an STO-3G basis [8] with that 
calculated using an array of cube functions with coefficients derived from the 
STO-3G wavefunction. Recognising that, due to the discontinuity of a cube 
function, the regular manner of calculation of the kinetic energy is not possible, we 
present results for the kinetic energy of the hydrogen molecule using a numerical 
method. 

2 Cube functions 

Consider the two electron integral 

f~b~ ~bj(1)r[-21 ~b~' ~b,(2) dzt dzz = t kl). (2) (1) (2) (ij 

If the functions ~b., a -- {i, j ,  k, l}, are cube functions then 

(ij [ kl)  = (ii l kk)6,j6kZ. (3) 

This reduces the two-electron integral evaluation from scaling as N 4 to N 2 in 
a manner similar to the NDO approximation of semi-empirical methods [9]. For 
the two-electron integral this corresponds to the repulsion of the density in cubes 
i and k. If i :~ k and the distance between the cubes is large the repulsion can be 
treated as the interaction of two point charges. As the cubes approach one another 
the multipoles of the charge distribution begin to become important. A uniform 
cube density has the advantage of only containing multipoles of even rank greater 
than 2 and, in practice, one can often neglect contributions of multipoles of rank 
greater than 6; thus, it is possible, for moderately close cubes, to express the 
interaction of the uniform cube densities in terms of multipole moments [10, 11]. 
However, for co-incident or proximate cubes the multipole expansion does not 
converge rapidly. Therefore, we develop analytic expressions for the integral (iilii),  
the co-incident case in the next section, and also expressions for the nuclear 
attraction integrals. We can use these expressions to determine the interaction 
between proximate cubes. 
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It is worthwhile to note that the cube size need not be uniform throughout the 
grid and that expressions for the coulomb interaction between cubes of different 
sizes can be calculated exactly. 

3 Analytic expressions for the two-electron cube integrals 

3.1 The first three dimensions 

The intention in this section is to integrate over three dimensions of the six- 
dimensional integral (iiJii), for a cuboid of side J x K x L, where the edge of length 
J is aligned with the x axis, length K with the y axis, and L with the z axis. 

The integral with limits is given by 

f o f / f : f : f : f :  I = dxl  dx2 dyl d22 dzl dz2 

1 

× ~/(xl - x 2 )  2 + 0'1 -y2)~ + (z~ -z2Y" (4) 
The first consideration is to decide upon the coordinate system to be used. The 

following change of coordinates is useful: 

= ½(x~ + x~) ,  

/~ = ½(x~ - x 2 ) ,  

= ½ ( y l  + y~) ,  

v = ½ ( y l  - y ~ ) ,  

p = ½ ( z l  + z2) ,  

0- = ½(z l  - z2) ,  (5) 

An elementary jacobian transformation from xl and x2 to a and fl yields 

dxl dx2 = 2dct dfl, (6) 

with a change in limits of either 

• the limits with respect to fl involve ~. 

f~ dxl f~ dx2 F(xl,x2)= f~/2d~ f: dfl2F(~,fl) 
+ d~ dfl 2F (~, fl) (7) 

/2 - J  

o r  

• the limits with respect to ~ involve fl 

fi 'dxl f f  dx2 F(xa'x2)= rJ/EJ-J]2 ~ J-lfll dfl Jlal d ,  2F (c~, fl). (8) 

Using Eq. (8), Eq. (4) can be rewritten as 

ra/2 rJ-,~, rK/2 rr-,~, rL/2 rL-'~' 4 I = j-J/2 dfl dv dlz do- dp 
JI/~l dee J-K~2 JIvl  J-L/2 J i l l  J f l 2  _[_ V2 Jr- 0 -2. 

(9) 
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Firstly carrying out the integration in Eq. (9) over e, # and p yields the integral over 
the other three coordinates as 

I = dv da 
J-J~2  j - K ~ 2  J-L~2 N/f l  2 -~- V 2 -F 0 .2 

JKL-2, f l ,KL-2J ,v ,L-2JK,a[  ) .  (10) 
+ 4dlv[ [al + 41fllKicrl + 41ill [vie - 8[fll Ivl Io'l 

As the integrand is symmetric with respect to each of the remaining coordinates 
the integral in Eq. (10), it may be expressed (with moduli signs no longer neces- 
sary) as 

f f r / 2 f : / 2  32 I = Z2 dfl dv da 
j o j o ~/#~ + v ~ + o~ 

( J K L  - 2 # K L  - 2J~L - 2JZ<~ 
+ 4Jva + 4flKa + 4flvL -- 8flva]" (11) 

This may be expressed in spherical polar coordinates using the substitutions 

fl = r cos 0, 

v = r sin 0 sin , ,  

a = rsin 0 cos ~, (12) 

where r = ~/f12 + v 2 + ~2, 0 is the polar angle and ~ is the azimuthal angle. 
The integral may be partitioned into eight parts as 

I = I j K  L + I#K L + I j r  L + I j r e  + I jvo  + I#Ka + I#vL + I#~, (13) 

where each of the definite integrals of the type Iijk is defined by 

IsKz:32JKLfdq~fdOfdrrsinO, 

I#I~L = --  6 4 K L  f dtp 

I j vL  ---- - -  6 4 J L  f dq~ 

I j K  a = --  6 4 J K  f dq~ 

'dO f d r  r 2 cos 0 sin 0, 

"dO f d r  r 2 sin 2 8 sin q~, 

"dO fdr r 2 sin 2 0 cos q~, 

Ij~.=128JfdtpfdOfdrr3sin3Osintpcosrp, 

bK,=128K f d~o f dO f drr3cosOsin2Ocos~o, 

lp~L=128Lfd~ofdOfdrr3cosgsin20sin~o, 

I,~.=-256KfdtpfdOfdrr4cosOsin30sinq~cos~o. 

(14) 
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Here the limits of the integrals are complicated and so are not explicitly shown; the 
next section discusses these limits in some detail. 

3.2 The last three dimensions 

Each integration is carried out in one octant of the original cuboid so the limits for 
integration are for 0 ~ ,9 ~< n/2 and 0 ~< go ~< n/2. The octant may be divided into 
four regions as is demonstrated with the example for the integrand Fe~ 

f l  an-'(K/L) do ( _ f£an-'(L/Jc°s~°)d,g f]/2c°s° Ie~ \ dr L~(r, '9, go) 

+ d,9 dO Fex(r, ,9, ~o) 
,}tan- 1 (L/J cos (p) 0 

(15) 
In~2 (flan-l(K/Jsin~o) f J/2cos~ 

+ dgo d,9 dr Fex(r, ,9, go) 
dtan- 1 (K/L) 0 

+ft[/~_l(K/.1sin~o) dO fK/2sira..gsintp drFex(r, `9, go)). 

These regions are labelled TS, TE, MS, and ME, where T (top) describes the 
part of the integral 0 ~< ,9 ~< 4, M (middle) describes the part of the integral 

< ,9 ~< r~/2, S (south) describes the part of the integral for 0 ~< go ,N< tan-  1 (K/L) 
and E (east) the part for t an-  1 (K/L) <~ go < n/2, and ¢ is the value of intermediate 
limit of the integral over ,9. 

The set of integrals to be evaluated are shown in Table 1. On integration with 
respect to r the resulting integrals in the top regions, TS and TE, have identical 
integrands. These integrals over ,9 and go, and the corresponding integrals for the 
MS and ME regions, are presented in Table 2. The reference to Gradshteyn and 
Ryzhik is given by Ref. [123. 

There are only five distinct types of integral with respect to ,9 in Table 2; 
the limit ,ginter depends on go but is of the form tan - 1 (lip trig go) where p = J/M, 
with (M, t r ig)= (L, cos) for go < tan -1 (K/L) (this region being labelled S) and 
(M, trig) = (K, sin) for go > t an-  t (K/L) (this region being labelled E). We have the 
following result. 

1. Gradshteyn and Ryzhik [12, §2.526.21, p. 137]: 

f] "'" sin ,9 d,9 x/1 + p2 trig2 go 1. (16) 
~o~  0 = p trig go 

2. Gradshteyn and Ryzhik [12, §2.526.26, p. 137]: 

; ]  ..... _ ~  ( x / l + p 2 t r i g 2 g o + l )  sin 2 ,9 dO x/1 + p2 trig2 go log . (17) 
cos s '9 = 2p 2 trig 2 go x/1 + p2 trig2 go _ 1 

3. Gradshteyn and Ryzhik [12, §2.526.31, p. 137]: 

~°'°"'sina_Od,9 x/1 + pZtrig2go (1 + p2trigZ9)3/2 2 
= + + (18) 

Jo cos 4 0 p trig go 3p s trig s go 
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Table 1. Table of integrals over r, ~ and ~o 

M. E. Mura,  N. C. Handy  

# Label Cartesian integrand Integral  in spherical polar  coordinates 

1. JKL - r sin O d r  dO dq~ 
r 

2. flKL fl-'r f r  2 cos 0 sin 0 d r  dO dtp 

3. JvL r 2 sin 2 O sin q~ d r  dO d~o 
¥ 

4. JK~ - r 2 sin a O cos ~o d r  dO d~o 
r 

5. Jva  - -  r 3 sin 3 ~ sin ~o cos ~o d r  dO d~o 
Y 

6. flKtr fl__~ar f r  3 cos 0 sin 2 0 cos ~o d r  dO dip 

7. [tvL - -  r3cosOsin2Osinq~drd~d~o 
I" 

8. [Jv~ pv~ I - -  r ~ cos 0 sin 3 0 sin q~ cos ~0 d r  d~ dq~ 
¥ 

4. Gradshteyn and Ryzhik [12, §2.526.1, p. 136]: 

~/2 d~. = 21 log ( ~ / 1  + p2 trig2 go + ptriggo ~ p 2  (19) 
J0,,,,, sin 0 ~/'1 + trig s go - p trig go / 

5. Gradshteyn and Ryzhik [12, §2.526.37, p. 138]: 

.f ~/2 ~/1 + p2 trig2 go _ 1. (20) 
COS 0 dO 

,)O~ .... s i n  2 O 

The integrals with respect to 0 and go in Table 2 then result in integrals 
over go for each of the regions TS, TE, MS and ME, and these are presented in 
Tables 3-6. 

Tables 3-6 contain eight general types of integral which may be further 
subclassified. To describe these integral types it is useful to introduce three new 
functions, 

u = x/1 + p2 trig2 go, (21) 

0 = trig go, (22) 

h = ~/1 - trig 2 go, (23) 

The functions 9 and h have the same relationship to each other as sin go and 
cos go. Initially, let us assume that trig is sin. For the cases where trig is cos 
the identity sin(go)= cos ( r r /2 -  go) becomes useful. The necessary integrals are 
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Table 3. Table of integrals over go in TS region of cuboid 

M. E. Mura, N. C. Handy 

# Label Limits O<q~<tan-l(K/L) with (p, trig)=(J/L, cos) 

1. JKL fJ-~8 (x/l+-p2trig2g°\ p trig go 1) dgo 

f J 3 (  xfl + p2 trig2 go X)&p 
2. flKL ~ p trig ~o 

f J 3  ( ~ f l  +P  2 trig2 g° 1 log ( ~ 1  + P2 trig2 q~ + 1 ) )  sin go dg O 
3. JvL ~ \ 2 ~  trig 2 ep 4 1 + p2 trig2 tp - 1 

f J 3  (n/1 + '2 trig2 ~P 1 log (xf.___11 + P2 trig2 go + 1 ) )  cos go dg O 
4. JKa ~ \ 2 ~  trig 2 go 4 \ X/i" ÷ p2 trig2 go _ 1 

f J ¢ (  x/l+p2trig2~o (l+p2trig2go) 3/2 2 )  
5. Jv¢ _~ p trig q~ + 3p 3 trig 3 tp t- ~ sin tp cos go d~o 

fJ+(x/l+p2trig2rP 1 log (x/__11 + P2 trig__._.~2 rP + 1 ) ) cos ¢p dip 
6. flKa 6-4k, 2 ~  trig2 q9 4 \ ~/] + p2 trig2~_ 1 

fJ+(~fl+p2trig2q ~ 11o f x / l + p 2 t r i g 2 g o + l ) ) s i n q ~ d g  O 
+ 4 

f ( (l+p2trig2tP)3/2 2 )  j5 x/1 + p2 trig2 go + q-~ sin go cos ~ dgo 
8. flva ..~ p trig ~o 3p 3 trig 3 go 

Table 4. Table of integrals over q~ in TE region of cuboid 

# Label Limits tan- 1 (K/L) < go < ~/2 with (p, trig) = (J/K, sin) 

1. JKL 

2. flKL 

3. JvL 

4. JKa 

5. Jva 

6. flKtr 

7. flvL 

' j2 fx/1  + p2 trig2 go 
T p- rig  
j3 f ~/1 + p2 trig2 ~0 

j3 (~/1 + p2 trig2 ~0 

f J3 (x /1  + p2 trig2 go 
24 \ 2p 2 trig 2 go 

f J+( x/l+p2trig 2 
6"4 p trig ~o 

f j4 (x /1  + p2 trig2 tp 
64 \ 2p 2 trig 2 go 

f J+ (x / l  + p2trig2 tp 
6-4 2p 2 trig 2 go 

X)d+ 
1 / dgo 

4 \ x/1 + p2 trig2 go _ 1 

4 k x/1 + p2 trig2 tp - 1 

go + (1 +3p ap2 trig atrig2 ~ogo)an Jr 3 sin go cos go dgo 

4 \ x/1 + p: trig 2 go - 1 cos go dgo 

4 \x /1  + p2 trig2 go _ 1 / 

x/1 + p2 trig2 go (1 + p2 trig2 go)a/2 2 ) 
p trig go + + sin go cos go dgo 3p a trig 3 go 3 
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Table 5. Table of integrals over O in ME region of cuboid 
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# Label Limits tan-l(K/L)<o<~/2 with (p, trig)=(J/K, sin) 

1. JKL 

2. flKL 

3. JvL 

4. JKa 

5. Jva 

6. flKa 

7. flvL 

8. ~ w  

f K2 ( l log(x/ l  + p2trig2 0 + ptrigcpl l do 
8 \2  \x/1 +p2trig2tp_ptrigo//sin20 

fK--4 ( x/1 + P2 trig2 0 -- 1) sind-~0 0 

fK3(1  ( x / l + p 2 t r i g 2 ~ o + p t r i g o ) ) ~  
24 \ 2 log \ x/1 + p2 trig2 O - P trig 2 O 

fK3(1  ( ~,/1 + p2 trig2 cp + p trig q~ '/"/cos O d O 
24 \2  l°g ~ + p 2 t r i g 2 0 _ p t r i g o , ] / /  sinao 

fK'*(l_ (x/1 + p2 trig2 O + p trigo xl'/cos O do 
64 \2  l°g -x-/-l+p2trig20_ptrigoJ] sin30 

f~_~ (x/1 cos O do + p2 trig2 O - 1) sin4------ ~ 

(x/1 + p2 trig2 O - 1) d ~  
sin 3 (0 

f 1~--~0 (x/1 -1) c°s ~° dO + p2 trig2 O sin'* O 

Table 6. Table of integrals over O in MS region of cuboid 

# Label Limits O<o<tan-l(K/L) with (p, trig)=(J/L, cos) 

1. JKL f ~_.~2 ( 1 (x/1 + P2 trig2 O + P trigo~ ~ do 
log x/1 + p2 trig2 O - P trig O//c°s2 O 

+p trig O-1)co--~ ° 

f L 3 ( ~  (x/1 + P2 trig2 O + P trig ~° "/'/sin ~° do 
JvL ~-~ log x/1 + p2 trig2 O - P trig O ] ] c°s3 O 

JKa f2~(~log(~//_ll+p2trig20+ptrigo' / ' /  do 
+ p2 trig2 O - P trig O ,] ] c°s2 O 

dw fL4(  1 _ (x/1 + P2 trig2 O + P trigo "/'/sin O d__~ ° 
J 6 4 \ 2  l°g ~/l+p2trig2 O - p t r i g O ] j  cos30 

flKa f 6-4, n/1 + p2 trig2 O - 1, co-d~-o 

f" flvL ~ (~/1 + p2 trig2 O - 1) sin O d._______~ 
cos'* O 

f L ~ sin O do flva 1--~(x/1 +p2trig2 O -1) c~s '~  

4. 

5. 

6. 

7. 

8. 



154 M. E. Mura, N. C. Handy 

evaluated in the tables of Gradshteyn and Ryzhik and Appendix A. Thus, the 
integral types are 

1. Solution for JKL-TS, JKL-TE, flKL-TS, flKL-TE is found in Gradshteyn and 
Ryzhik [12, §2.583.32, p. 160 and §2.598, p. 174]: 

f j " ( u )  [ i (u+h'~ ( ph ) ] ~-" .,. )-~--1 d~o= -~pplOgLu_hj-sin-' -q~ (24) 
~mln 9 

2. Solutions for JvL-TE, flvL-TE, flKa-TS, JKo-TS are found in Gradshteyn and 
Ryzhik [12, §2.583.32, p. 160, §2.597.4, p. 174, §2.597.6, p. 174] and in Eq. 53 in 
Appendix A: 

.,. g a '°g k  c-f ) ) = 

+ 4 1 ° g \ u - 1  ~,," 

(1 + Pa) log(U + h" ~ 
4p 2 \U- ' -~J  

(25) 

3. Solutions for JKa-TE, flKa-TE, JvL-TS, flvL-TS are found in Gradshteyn and 
Ryzhik [12, §2.583.44, p. 161, §2.598, p. 174, §2.271.4, p. 86] and in Eq (54) in 
Appendix A: 

f ' ' (  u ~ (u+l~'~hdq~=[ u glog(U+l"~l'=" (26) .,° 2p~-92 l o g \ ~ - ~ - / /  2p29 4 kU-1/J..,. 
4. Solutions for Jva-TE, flva-TE, Jva-TS, flva-TS are found in Gradshteyn and 
Ryzhik [12, §2.583.3, p. 158, §2.275.7, p. 88, §2.598, p. 174]: 

f~= , ° ( -  uS + ) hdcp ua 

5. Solutions for flKL-MS, flKL-ME, flKa-MS, flvL-ME are found in Gradshteyn 
and Ryzhik [12, §2.583.39 (p. 161: note the typographical sign error in the second 
term) and §2.526.3, p. 136] 

f]m"(~-) [ (l+p2)log(U+h)(1-u)h i (1+h)]:7: 
d e =  ---7---  \7-S--~ + - - +  log .,° 2o 2 ~ \ T----~ 

(28) 

6. Solutions for JKL-ME, JvL-ME, JKL-MS, JKa-MS are found in Gradshteyn 
and Ryzhik [12, §2.584.82 (but there is believed to be a sign error in this formula so 
consider the formulae §2.597.4 and §2,597.6, p. 173 instead)] and in 
Eq. (55) in Appendix A: 

~=" 1 ( u + pg ) ) h log(U + pg 

p f u + h 
2 1 ° g ' \ u - h ) + s i n - ' (  ph z~q ~-°" (29)  4TVT/Jo.,, 

7. Solutions for JKa-ME, Jva-ME, JvL-MS, Jva-MS are found in Gradshteyn 
and Ryzhik [12, §2.584.80, p. 166] and in Eq. (56) in Appendix A: 

f~i.;.(2_~log(U+p# ~ I,  fu+pg'~_pul~'" - 4-~02 log kuTp# ) (30) 
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8. Solutions for [3vL-MS, [3Ka-ME, flva-MS, flvo--ME are found in Gradshteyn 
and Ryzhik [12, §2.583.65, p. 162 and §2.526.45, p. 138]: 

 u ,lZil I 
Using the results of Eqs (24)-(31) in the integrals in Tables 3-6 and introducing 

the appropriate limits and the variable R = x/L 2 + K 2 + j2, the evaluated inte- 
grals of the lljk in Eq. (13) become 

I s r z=4JKL J K l O g \ R _ L ]  + J L l ° g \ R - K j  + K L l ° g \ R - J  

- - - T -  + (J2 - KS)sin-I  + j s v / - ~  + K2 

+ J2x/L2 + K 2 ' 

l#rL= 3 K 3 1 ° g \ x / L ~ + K 2 - -  +L31°g \x / / -~+K2_  K 

( .  + , )_  (~ + , , )  
-- (K a + 3J2K)log \R  - L ] (L:3 + 3j2L)log \ - ~ - - ~ ]  

JL 

( ,K )1 + sin-1 ~/L2+j2x /L2+K2 

- 4KLR + 4 K L v / ~ +  K 2 + 2Ja~}, (33) 

IJ~L=--~ - J3 l°g \~ / -~  + j2 -- + l°g \ V / ~  + S 2 - - -  

- (3JK2 + J3) l°g \ R  - L ]  -(L3 + 3K2L) l°g \R-'--,I 

+ 4K3 sin_l ( JL ) 
, / ~  + : , / ~  + / :  

-- 4JLR + 4 J L ~ } .  (34) 
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2JK (~_~K 2 ÷ j2 ..}_ K + Ka log j 2 - - -  
Isr~=---~ - jal°g\ .v / -~+ j Z _ K  \ x / K ~  + 

+ 4La sin_1 ( JK ) 

- 4JKR + 4 J K ~ } .  (35) 

Ij~, = ~ -- 3K41og - 3L41og 
+ J '  \ , / L  + 

+ (3L 4 + 6K2L 2 + 3K 4) log \ ~ Z ' ~  

+ (10JL 2 + 10JK 2 + 4Ja )R  + 4J  4 

_ (10JL 2 + 4 j 3 ) x / ~  + j2  _ (10JK 2 + 4 j 3 ) ~ } ,  (36) 

Iar ~=-~- - 3 J  4log - 3 L  4log -- 
+ I( 

+ 3(L 4 + 2j2L2 + j4)  l O g k R _  K] 

- (10KL 2 + 4K3)x/-L-7 + K 2 + (10KL 2 + 4K 3 + IOj2K)R 

_ (4K 3 + IOj2Klx/-~T + j2 + 4K4t, (37) 
. /  

Ia~L:L{_3J'~IoglX/~+J:-I-L)_3K'Iog(~_---~L22+K2-t-L ) 
\ x / L 2  + J 2 L \ x / L  + K  2 L 

, f R + L ' I  + 3(K 4 + 2J2K 2 + J4) mg ~ Z - - £ )  

- (4L a + 10K2L)x//-~ + K s + (4L 3 + 10K2L + IOj2L)R 

_ (4L a + 1 0 j 2 L ) x / ~  + j2  + 4L4}, (38) 

I ~  = -~ {-- (L 4 + 2(K 2 + J 2 )L 2  -t- K 4 ÷ 2 J 2 K  2 -t- J4)R -- L s -- K s -- js 

+ (L 4 + 2K2L 2 + K4)x/-L-5 + K 2 + (L 4 + 2j2L2 + j4)x/-L-5 + j2  

+ (K 4 + 2 j2K2  + j , * ) x / ~  + j2}.  (39) 
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Thus, the Iok terms are summed to obtain I, the elegant and simple form of the 
coulomb integral for the cuboid of side J x K x L, and I is given in Eq. (40): 

I= 5J4Klog n / K 2 + j 2 - -  \ x / L  + K  2 _  

+ 5JK 4 log \ x /K  + j 2  _ + 5 J g L  log \ ~ / L  2 + j 2  _ 

+ 5JL 4 log \x /L  + ja -- + 5K4L log \ , f L  2 + K ~ -  

_ 5L(K 4 _  6J2K2 + j4 )  log \ R  - L 

_ 5K(L 4 _ 6jEL2 + j 4 ) l o g  \ ~ - - - / ~  ] 

(R+ 
- -  5J(L4 -- 6K2L2 + K4) l°g \ R ,  J]  

+ 40JKL(J2 _ K2)sin_l ( JL ) 

+40JKL(J2 L2)sin_,( JK ) 

+ 4(L ~ -  3(K 2 + J2)L2 + K 4 -  3 J 2 K  2 + J4)R + 4L 5 + 4K ~ + 4 J  s 

-- 4(L" - 3 K 2 L  2 + K 4 ) x / ~  7 + K 2 - 4 ( L  4 -  3 J 2 L  2 + J4)N//L-~ + j 2  

-- 4(K 4 -- 3JEK 2 -I- J4)x//-g-ff + j2  - -  20JaKLrQ. (40) 

For  a unit cube with unit charge density this leads to a coulomb energy of 
1.88231264. This result was checked by use of Euler-Maclaurin quadrature with 
the jacobian of the form dx = At2(1 - t) 2 dt for x being the coordinates r ,  v and 
tr in Eq. (11). One can see that the pole in the integrand is avoided in the numerical 
integration; consider a cube of side L and the elements are N x N x N along each 
side and so the interval 6 is 6 = L/N. The element nearest the pole is centred 
on (6/2, 6/2, 6/2) and so the contribution to the integral, A, for the function 

2 + v + is  

6 3 

a = 6--7-3/~' (41) 

so that A ~ 0 as 6 --+ 0 and the pole is avoided. The numerical results for the unit 
cube agreed with the analytic results to 8 significant figures when N = 200. The 
analytic results are shown in Table 7. 

In addition to the numerical checking, integrals were also tested by differenti- 
ation using the numerical algebra package 'Axiom' [-13]. The package was used to 
ensure the correct summation and simplification of component expressions of the 
two-electron integral I. 
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Table 7. Table of evaluated cuboid integrals. 
The first four rows contain the contributions 
to the unit cube with unit density of the inte- 
grals I~jk, as given in Eq. (13). The final three 
rows show the coulomb energy for the cubes 
of unit density with their size (dimensions) 
shown as a subscript 

Integral Coulomb energy 

IIKt 9.52030946 
I#gL, [jvL, I j K a  --4.12474847 
Ijw, IaK~,Ip~L 1.86637523 
I ~  --0.86287708 
Ii×lxl 1.88231264 
12×1× 1 5.72639566 
12×2× 1 18.21031255 
I2×2~2 60.23400462 

4 Proximate cube integrals 

To obtain the two-electron integrals for proximate cubes consider the case of the 
interaction between two cubes which share a face. The total cuboid has sides 
1 x 1 x 2 and is comprised of two cubes of sides 1 x 1 x 1, the latter we label A and 
B. We use the notation {AIB} to denote the energy of the coulomb interaction of 
the density in cuboid A with the density in cuboid B. The self-interaction energy in 
the cuboid is known from Eq. (40) but is also made up of the self-interaction 
energies of A and B, and of the interaction between A and B and this may be 
expressed by 

{A + BIA + B} = {AIA} + {BIB} + 2{AIB}. (42) 

As the left-hand side and the first two terms of the right-hand side of Eq. (42) are 
known, the interaction between the cubes is easily found. 

A similar process can be followed for three unit cubes in a row, label- 
led sequentially as A, B and C, comprising a 1 x 1 x 3 cuboid to give the 
expression 

{A + B + C[A + B + C} = {A[A} + {BIB} + {CIC} + 2{A[B} 

+ 2{BIC} + 2{AIC}. (43) 

All expressions except {A[C} are known from Eqs. (40) and (42), and so the 
next-nearest neighbour interaction, {AIC }, is thus determined. This procedure can 
be continued until all desired interactions are calculated. Table 8 shows the results 
for the coulomb energy between two cubes of unit edge and unit charge density for 
different separations given by a vector in units of the cube edge. It can be seen that 
the cube derived energy differs markedly from the multipole energy when the cubes 
are close enough to touch each other, but as the separation increases so does the 
agreement. 
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Table 8. Coulomb energy calculated using cube integrals between two cubes of unit edge and 
unit charge density for different separations given by a vector in units of the cube edge. Also 
shown is the corresponding multipole energy which contain charge-charge, charge-hexa- 
decapole and charge-64 pole interactions [10, 111 and then the simple point charge interac- 
tion 1/R is tabulated. The final column shows the difference between the cube coulomb 
energies and the multipole energies 

Vector Cube coulomb Multipole 1/R Energy 
energy energy energy difference 

0 0 0 1.88231264 
1 0 0 0.98088518 0.973810 1.000000 7.076e-03 
1 1 0 0.70849513 0.707968 0.707107 5.268e-04 
1 1 1 0.57879700 0.578711 0.577350 8.623e-IN 
2 0 0 0.49913985 0.499112 0.500000 2.805e-05 
2 1 0 0.44710040 0.447102 0.447214 -1.610e-06 
2 1 1 0.40833127 0.408334 0.408248 -2.597e-06 
2 2 0 0.35359118 0.353590 0.353553 8.515e-07 
2 2 1 0.33339189 0.333392 0.333333 1.892e-07 
2 2 2 0.28871509 0.288715 0.288675 8.855e-08 
3 0 0 0.33321548 0.333215 0.333333 8.143e-07 
3 1 0 0.31617706 0.316177 0.316228 -3.049e-08 
3 1 1- 0.30149561 0.301511 0.301511 -2.091e-07 
3 2 0 0.27735277 0.277353 0.277350 2.317e-08 
3 2 1 0.26727114 0.267271 0.267261 -1.704e-08 
3 2 2 0.24254859 0.242549 0.242536 1.400e-09 
3 3 0 0.23570739 0.235707 0.235702 2.182e-08 
3 3 1 0.22942257 0.229423 0.229416 9.798e-09 
3 3 2 0.21320825 0.213208 0.213201 3.700e-09 
3 3 3 0.19245528 0.192455 0.192450 2.042e-09 
4 0 0 0.24997176 0.249972 0.250000 6.319e-08 
4 1 0 0.24251800 0.242518 0.242536 1.049e-08 
4 1 1 0.23569187 0.235692 0.235702 -1.158e-08 
4 2 0 0.22360348 0.223603 0.223607 -4.572e-09 
4 2 1 0.21821718 0.218217 0.218218 -8.387e-09 
4 2 2 0.20412675 0.204127 0.204124 -4.430e-09 
4 3 0 0.20000137 0.200001 0.200000 2.740e-09 
4 3 1 0.19611823 0.196118 0.196116 9.529e-10 
4 3 2 0.18569826 0.185698 0.185695 7.165e-ll 
4 3 3 0.17150118 0.171501 0.171499 3.975e-10 
4 4 0 0.17677793 0.176778 0.176777 1.633e-09 
4 4 1 0.17407915 0.174079 0.174078 1.033e-09 
4 4 2 0.16666848 0.166668 0.166667 3.950e-10 
4 4 3 0.15617545 0.156175 0.156174 2.177e-10 
4 4 4 0.14433879 0.144339 0.144338 1.873e-10 

5 Nuclear electronic integral 

T h e  n u c l e a r  e l e c t r o n i c  i n t e g r a l  for  t h e  i n t e r a c t i o n  b e t w e e n  n u c l e u s  A a n d  t h e  
e l e c t r o n  l a b e l l e d  1 is 

I N = I ¢ ~ ( 1 ) ¢ j ( 1 )  d z l  (44) 
.) r Al 
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and IN is zero unless i = j for non-overlapping cuboidal functions. Suppose that 
nucleus A lies within the cuboid of side J x K x L at an arbitrary position; the 
cuboid divides naturally into eight sub-cuboids of J+ x K+ x L+, where the sub- 
script _+ denotes perpendicular distance to the face of the cuboid from the nucleus 
in either the positive (+) or negative ( - )  direction. Thus, for example J + + J_ = J 
and it is apparent that J + is a function of A. The evaluation of the integral over one 
of these sub-cuboids, IN (J +, K +, L + ), proceeds in the same manner as the integral 
Isrr~ (equations 14 and 32) save that the upper limits for r in each of the eight 
cuboids now contain J+ instead of J/2, K+ instead of K/2, and L+ instead of L/2. 
The sub-integral is evaluated as 

1N(J+,K±,L+) log + L ±  J± L+ K± 
L+ + - - - - ~ -  og R - K ±  

K±L+ , (R + J± ) J~g 
+ - - - - ~ -  tog R--J± 4 

+ ( J ~ : - K ~ : ) s i n _ l (  J±L±2 2 ) 
2 w/K~ + J±~/L± + K~ 

2 + J±x/L± + K~ 
where 

R = ~/L~: + K~: + J~ .  (46) 

The whole integral for the nucleus in the cuboid is the sum of the results for 
each of  the sub-cuboids. 

To calculate the value for proximate cubes, consider two face-sharing cubes 
B and C. When the nucleus lies in cube B, and Ir~(B) and lr~(B + C) are known, the 
interaction between the nucleus and the cube C, IN(C), is obtained by subtraction 
from 

IN(B + C) = IN(B) + IN(C). (47) 

Because the nucleus is considered to be a point charge, the interaction between the 
nucleus and non-proximate cubes can be expressed as a set of charge-multipole 
interactions and these effectively become a charge-charge interaction at longer 
distances. This is demonstrated in Table 9. 

6 Coulomb energy of the hydrogen molecule 

In order to test the efficacy of the cube functions for the calculation of molecular 
energies, a basis set of cube functions are fitted to an STO-3G [8] wave function for 
the hydrogen molecule (H-H = 1.4 a.u.) and the coulomb energy is calculated with 
this basis. In all subsequent calculations the hydrogen molecule axis is rectilinear 
with the orientation of the cubes and lies in the centre of the region covered by the 
cubes. A number of factors need to be determined and these include: 

• the method for determining the density within a cube; 
• the size of the cubes; 
• the size of the region covered by the cube functions. 
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Table 9. Nuclear electronic energy calculated between a cubes of unit edge and unit charge 
density for different separations between a nucleus of unit charge and the centre of a unit cube 
with unit charge density given by a vector in units of the cube edge. Also shown is the 
corresponding multipole energy which contain charge-charge, charge-hexadecapole and 
charge-64 pole interactions [10, 11], and then the simple point charge interaction 1/R. The 
final column shows the difference between the Nuclear electronic energy calculated by the 
method described in this paper and the multipole energies 

Vector Cube-Nucleus Multiple 1/R Energy 
interaction energy energy difference 
energy 

0 0 0 2.38007736 
1 0 0 0.98759240 0.986905 1.000000 6.876e-04 
1 1 0 0.70756582 0.707538 0.707107 2.827e-05 
1 1 1 0.57803433 0.578031 0.577350 3.815e-06 
2 0 0 0.49955780 0.499556 0.500000 1.905e-06 
2 1 0 0.44715769 0.447158 0.447214 -1.133e-07 
2 1 1 0.40829093 0.408291 0.408248 -1.518e-07 
2 2 0 0.35357191 0.353572 0.353553 5.248e-08 
2 2 1 0.33336253 0.333363 0.333333 1.207e-08 
2 2 2 0.28869507 0.288695 0.288675 5.146e-09 
3 0 0 0.33327405 0.333274 0.333333 5.237e-08 
3 1 0 0.31620243 0.316202 0.316228 -2.316e-09 
3 1 1 0.30150357 0.301504 0.301511 --1.301e-08 
3 2 0 0.27735142 0.277351 0.277350 1.377e-09 
3 2 1 0.26726620 0.267266 0.267261 -I.004e-09 
3 2 2 0.24254211 0.242542 0.242536 8.161e-ll 
3 3 0 0.23570482 0.235705 0.235702 1.359e-09 
3 3 1 0.22941915 0.229419 0.229416 6.207e-10 
3 3 2 0.21320448 0.213204 0.213201 2.267e-10 
3 3 3 0.19245268 0.192453 0.192453 2.235e-10 
4 0 0 0.24998585 0.249986 0.250000 4.005e-09 
4 1 0 0.24252681 0.242527 0.242536 6.476e-10 
4 1 1 0.23569707 0.235697 0.235702 -7.697e-10 
4 2 0 0.22360514 0.223605 0.223607 --2.975e-10 
4 2 1 0.21821754 0.218218 0.218218 -5.220e-10 
4 2 2 0.20412545 0.204125 0.204124 -2.726e-10 
4 3 0 0.20000068 0.200001 0.200000 1.726e-10 
4 3 1 0.19611718 0.196117 0.196116 6.075e-ll 
4 3 2 0.18569680 0.185697 0.185695 4.927e-12 
4 3 3 0.17149988 0.171500 0.171499 2.360e-ll 
4 4 0 0.17677731 0.176777 0.176777 1.020e-10 
4 4 1 0.17407840 0.174078 0.174078 6.478e-ll 
4 4 2 0.16666757 0.166668 0.166667 2.445e-ll 
4 4 3 0.15617460 0.156175 0.156174 1.498e-ll 
4 4 4 0.14433818 0.144338 0.144338 8.947e-12 

The quadrature schemes used for determining the density within a cube were 
comprised of (a) simple quadrature, SQ (the value for the MO at the centre of the 
cube was taken to be the value throughout the cube) and (b) contracted simple 
quadrature, CSQ(n). In the latter case the density in the cube was calculated by 
using simple quadrature for a number of sub-cubes fitting precisely in the cube; the 
number of sub-cubes, n 3, in a cube could be varied and typically n was 2, 4, 6 or 8. 
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As the total electronic charge in the system is 2 electrons, we initially consider 
a large region for coverage, small cube size and a good quadrature scheme 
within individual cubes to reproduce the total electronic charge in the system. 
It was found that cubes of 0.125 a.u. in a region of 20x 20x 20a.u. with simple 
quadrature gave an integrated density of 2.000000000025. Table 10 shows 
the integrated density using simple quadrature, and contracted simple quadrature 
using 43 sub-cubes, for the hydrogen molecule with different cube dimensions 
over a region of 20 x 20 x 20 a.u.; it can be seen that the simple quadrature at 
cube side of 1.000 a.u. is identical to the contracted simple quadrature at cube 
side of 4.000 a.u., and similarly the simple quadrature at cube side of 0.125 is 
identical to the contracted simple quadrature at cube side of 1.000; the cost of 
calculation is essentially equivalent for each particular pair of identical integrated 
densities. 

The coulomb energy is 1.34468 a.u. when calculated using CSQ(8) over the 
region (20 a.u.) 3 with cubes of side 0.5 a.u., which is appreciably lower than the 
STO-3G value of 1.34683 a.u. The difference is supposed to come mainly from the 
regions nearest the atoms and, thus, a scheme may be devised to improve quadra- 
ture and the coulomb energy nearer the molecular centre. The couple (A, s) denotes 
the coulomb energy of a region A filled with cubes of side s. If region B lies 
within region A then (A, s ) -  (B, s)+ (B, s/2) will improve the description of 
the self-interaction in the region B and so improve the coulomb energy for the 
regiofi A. 

Using CSQ(4), the scheme (20, 0.5) - (10, 0.5) + (10, 0.25) - (5, 0.25) 
+ (5, 0.125) - (2.5, 0.125) + (2.5, 0.0625), the coulomb energy was 1.34610 a.u. and 

this compares well with the STO-3G result of 1.34683 a.u. 
Finally, we calculate the kinetic energy of the molecular orbital. Approximate 

methods must be used because the cuboidal basis functions are discontinuous and 
thus not differentiable. One way forward is to use a three-dimensional central 
difference second derivative formula [14] for the kinetic energy, KE, 

all cubes 
K E = - h  ~ Cio(--6Cio+Cix+ +c/x- +ciy+ +c/y- +ciz+ +clz-),  (48) 

i 

Table 10. Results for quadrature of density of the hydrogen molecule 
over a region of 20 :~20 x 20 a.u. using simple quadrature (1) and 
contracted simple quadrature of 43 and 83 subcubes 

Quadrature in cube Cube size a.u. Integrated density 

43 4.000 1.920334963917 
1 1.000 1.920334963917 
1 0.800 2.043538605089 
1 0.600 1.996207588699 
43 2.000 1.999729670509 
1 0.500 1.999729670509 
1 0.400 1.999984981706 
1 0.300 2.000000010316 
83 2.000 2.000000000016 
43 2.000 2.000000000016 
1 0.250 2.000000000016 
1 0.200 2.000000000030 
1 0.125 2.000000000025 
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Fig. 2. The kinetic energy is shown as a function of 
cube side and fitted to an even polynomial of fourth 
degree in cube side 

where h is the size of the cube side, Cio is the coefficient of the ith cube function in 
the molecular orbital and c~v +, (v = {x, y, z}), is the coefficient of the neighbouring 
cube or zero if this cube would lie beyond the boundary of the region described by 
the cube functions; a region of 15 x 15 x 15 a.u. was partitioned into cubes of side 
0.25, 0.125, 0.100, 0.080 and 0.0625 a.u. and the kinetic energy calculated for each 
respective cube size; the kinetic energy may be considered to be a function of the 
cube side and was thus fitted to an even polynomial of fourth degree in cube side. 
This is shown in Fig. 2. Extrapolated to a cube side of zero, the kinetic energy 
is 1.2010785 a.u. and this compares very well with the STO-3G result of 
1.2010795 a.u. Clearly, Richardson extrapolation [15] is of value for cube function 
calculations. 

We recognise that the use of Eq. (48) may be considered unsatisfactory because 
it is an expression for the kinetic energy of a different approximation for the 
molecular orbital. However, in the limit of an infinite number of infinitesimal cubes 
the result is the one required. As a practical procedure we believe that the 
combination of Eq. (48) for the kinetic energy and the analytic expressions for the 
nuclear attraction and two-electron integrals derived in this paper is justified. 

7 Summary 

In this paper the analytic forms of the coulomb and nuclear electronic energies are 
presented for a cuboid of uniform density ( f  = 1 in Eq. (1)) and arbitrary dimen- 
sions. These results are used to obtain coulomb and nuclear attraction energies for 
a cellular network of cube functions (Tables 9 and 8). A program has been written 
to test the suitability of these cuboidal functions to form a basis set by calculating 
the coulomb and kinetic energy of the STO-3G hydrogen molecule. The funda- 
mental approximation that the density in a cube may be represented by a constant 
may be a large one but, nonetheless, the results for the hydrogen molecule show 
that a reasonable value for the coulomb energy may be obtained. A new class of 
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basis functions for which all the integrals are evaluated has been demonstrated as 
being appropriate for regular quantum mechanical calculations. 

Of course, this is only a preliminary investigation using cuboidal functions. We 
have simply obtained the coefficients of each cube from a given molecular orbital of 
the STO-3G hydrogen molecule, and then evaluated kinetic and coulomb energies. 
But the principal idea is that the cuboids should be basis functions for molecular 
orbitals to be used in an iterative SCF approach. In principle, we have given all the 
necessary machinery, but in practice presumably a very large number of cuboids 
will have to be used, leading to a large Fock matrix which would be impractical to 
manipulate with conventional techniques. However, the correspondence between 
the cuboidal basis functions and numerical techniques (i.e. finite element, partition- 
ing schemes) is considerable and may allow, for example, the use of dynamic 
optimisation over traditional diagonalisation techniques and multi-grid methods 
to solve Poisson's equation to obtain the coulomb energy more rapidly. One of the 
particularly attractive features of the use of cube functions is that the partitioning 
of space is controlled by only one parameter, namely the cube size; this allows one 
to extrapolate to the infinitesimal cube limit and obtain benchmark results. All this, 
however, lies beyond the scope of this paper, the purpose of which is to introduce 
the cuboidal functions. 
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Log integrals 

To evaluate integrals of the form 

f f (x) log (g(x) ) dx, (49) 

proceed by partial integration with F(x) = Sf(x) dx to get 

f(x) log (g(x)) dx = F(x)log (g(x)) - F(x)--~ dx, (50) 

where prime indicates the derivative with respect to x. In the case of 

is(x) log k (51) 

we find 

ff(x)log(a(x) a(x) (ba'-ab' a \b(x))dx= F(x) log( -~) -  f F(x) b2 ) b d x .  (52) 

There are four cases to be considered in this work and they are: 

~ . ( u  + 1  fhlOgku_l jd tp ,  j ~ l o g ~ u _ - - z ~ J d q ~ ,  fg log \ ~ 3  dq~ ' Cu+l~ ~'1 llu+pg'k 

+"'i I ~  log \ U - - ' ~ / d ~  O, 
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where  u, g a n d  h a re  as  def ined  before  in Eqs.  (21), (22) a n d  (23), respectively.  I n  
these example s  it is a s s u m e d  tha t  g = s in q~. 

T h e  resul ts  are  
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